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Abstract 

Systems which use embedded microcomputers to 
perform control functions can often double as 
flexible debugging and maintenance devices by 
switching in high level language ROMS. This paper 
describes systems in which such benefits are suc
cessfully exploited. 

Introduction 

For several years we have been developing 
sma 11 sys terns using microcomputers as the primary 
system "intelligence". These systems are all 
similar in that they are dedicated to a simple 
combination of mutually exclusive functions in a 
slow or non-critical time sequence. After some 
early experimentation with tailor-made languages, 
.we finally settled on using BASIC to implement 
the programs used in these systems. In general, 
they all have mechanical devices to drive (step
ping motors or DC motors) and perform sundry other 
tasks such as reading pushbuttons, turning lamps 
on or off, and communicating with an operator. 

Early in the development of these systems, 
the value of having a conversational interactive 
device through which we can probe and manipulate 
system elements became apparent. Critically 
valuable test loops can be constructed and exe
cuted in minutes, often saving hours of tedious 
work with an oscilloscope and "lashed up" test 
circuits. 

We have since moved on to much larger systems. 
The latest is MIDAS (Modular Interactive Data 
Analysis System). The MIDAS prototype, consist
ing of a subset of the final system, is currently 
undergoing an evaluative testing program . Micro
computers pervade MIDAS as well as its many ap
pendages, and these embedded micros serve as 
examples of the value inherent in the use of a 
high-level conversational language during debugg
ing and maintenance phases. 

MIDAS is a pyramid of processors (Fig. 1). 
At the peak is a single elaborate processor used 
to converse interactively with an array of users. 
In the midsection of the pyramid are arrays of 
mini-computer central processors--"super-micros"--

operating in parallel and used to sort through a 
massive data base existing in an array of magnetic 
tapes, multimegabyte memories and disc packs. 
Microcomputers riddle the structure, serving as 
low speed switches and simple-minded decision 
makers in everything from the handling of mechani
cal sequencing in the disc and tape cpntrollers 
through handshaking with users off the peak of 
the pyramid. 

Figure 1. MIDAS 

} 
INTERACTIVE 
USER STATIONS 

Embedded micros access the system at its most 
intimate level; for example, at the mechanical 
functioning of disc and magnetic tape drives. 
They also have privileged access to most data 
storage and data passageways. For example, 



micros control settings of high-speed data path
way switches and physically carry out commanded 
switching of memory subsystems from one" "super
micro" to another. Most places where the system 
is capable of "bending;" the joints where flexi
bility is effected, are under the direct super
vision and control of microcomputers. In address
ing both initial debugging and subsequent mainte
nance in the system, we are using the embedded 
microcomputers as frontline interfaces between 
engineering and/or maintenance personnel and many 
critical states and flows within the structure. 
To enhance this communication we have turned away 
from the computer-on-a-chip micro in favor of a 
slightly more elaborate configuration capable of 
executing short routines written in a high level 
language (BASIC). 

Economics of the Expanded Micro 

Microcomputers are used freely throughout 
MIDAS. Effectively, .the microcomputers have 
become just .another component. They ar;e plugged 
into the system for reasons not philosophically 
dissimilar to those used to select other lngic 
components, such as integrated circuits. Since 
we desire to incorporate these devices into our 
system based on their efficient usefulness rather 
than based on their cost, it is inherently vital 
that the'1r individual and aggregate cost not make 
the system prohibitively expensive. Some addi
tional expense is ju~tifiable on the basis of 
savings in initially making the system operational 
(debugging) and on the basis of savings in 
reduced down-time and in reduced numbers of 
maintenance hours required, to repair the unit 
·following component failures (maintenance). 

Specifically, tradjtional component-level 
maintenance involves the temporary electrical 
connection of a monitoring device and/or a tester 
into suspect regions of th~ system (Fig. 2). The 
failure mode is then,hopefully reproduced by some 
operational acts and/or tester functions, often 
necessarily involving the entire pyramid, and the 
results are displayed in such a manner that the 
flawed logic becomes visible, allowing defective 
components to be replaced. Under ideal condi
tions, these procedures produce results quickly 
and efficiently. Tht; assumption implicit in the 
"ideal conditions" are: 

(1) The failure or flaw is explicit enough to be 
localized to the correct module and to the cor
rect part of the module by its symptoms. 

(2) The module under suspicion is physically 
easily accessible to the probes of test and 
monitoring equipment. 

(3) The failure is "hard." That is, it is 
reproducible by a simple duplication of some part 
of whatever procedure brought it to attention 
initially. 

As any experienced maintenance person can 
verify, the fulfillment of all these assumptions 
for any particular problem is rarely realized. 
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Memorable problems requ1r1ng the uncanny deduc
tive powers of a modern-day Sherlock Holmes seem 
remarkably common. This becomes more the case as 
the system becomes more campi ex. 

Figure 2. Traditional component-level maintenance 

figurE.:.]_. The embedded micro is connected to a 
terminal to allow maintenance personnel access to 
selected system components. 

Micros embedded in the system can help in the 
realization of these ideal assumptions, signifi
cantly reducing the costs associated with debug
ging and maintenance. Specifically, each micro 
is local to a part of the system. When loaded 
with a BASIC interpreter, it becomes a subsystem 
independent of the remaining system. The disc 
controller, for example, contains micros to handle 
error correction. The disc controller contains 
three data ports. Each port contains an error
correction micro. Loaded with BASIC, any one of 
the three micros can exercise and diagnose fail
ures in its own port while the remaining two ports 
are operating normally. Exercising subsystems 
independently adds a weapon to the diagnostic 
arsenal of the maintenance or debugging person. 
The ability to diagnose and localize failures is 
greatly enhanced by being able to exercise spe
cific parts of the system independent of adjacent 
parts. 

Embedded micros have "wired-in" access to 
intimate connections within the system. By con
necting a single cable from an input/output port 



to a terminal, the person doing the debugging 
gains conversational access to the system's inti
mate innards. Local loops can be composed and 
run on the spot to handle many types of testing. 

Finally, the embedded micro can often help in 
finding "soft" failures. Local loops can be set 
up and left running in attempts to pinpoint such 
intermittent malfunctions, while the remaining 
system is left to run normally. Embedded micros 
capable of running in conversational modes with 
maintenance personnel provide convenient, rapid 
access to many internal parts of the system. 
They also often allow the major parts of the 
system to function while a local subsystem is 
being repaired. Savings both in the time required 
to repair subsystems and in the time during which 
the entire system would normally have to be dedi
cated to maintenance justify the expense of ex
panding the capabilities of embedded micro
computers. 

Embedded Micros as Maintenance Devices 

Our embedded micro·s are dedicated to system 
operations under normal circumstances. They 
incorporate memory-mapped connections and standard 
input-output connections to various gates and 
control·signals (Fig. 3). When problems appear, 
the states of various .control signals become 
important to the maintenance per·son. It is also 
often necessary to allow him to arbitrarily 
control the various gates and control lines to 
which the micro has access. One approach to 
accomplishing this is to assembly-language program 
the micro with dedicated maintenance aids. By 
invoking such aids either with a terminal or with 
a switch-box/ 1 ight-array combination, access is 
gained to prespecified system values and func
tions. A problem with this approach is the in
herent lack of flexibility resulting from being 
required to "pre-guess" everything required for 
maintenance communications and to "pre-program" 
these requirements into the micro when the system 
is first assembled. 

Most micro systems have debugging software 
available which allows maintenance personnel to 
load and run short routines from a terminal. 
Maintenance personnel familiar with microcoding 
techniques may find this valuable. Our approach, 
however, has been to remove the system's execution 
ROM's, the program used during normal operations, 
and to replace them with ROM's containing a BASIC 
interpreter. Maintenance routines are then loaded 
as BASIC source programs either from a terminal ~s 
keyboard or from a library on cassette tape. The 
programs are, for the most part, universally read
able and can be readily modified to help entrap 
perverse failures thought up by Mother Nature's 
gremlins. 

The embedded micro has not replaced the oscil
loscope or logic analyzer as a maintenance tool. 
However, it can significantly enhance the use of 
these valuable tools by printing logic states at 
various crucial points without requiring direct 
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physical access. It can also be programmed to 
repetitively exercise states over which it has 
control, providing signals to be viewed with the 
oscilloscope or logic analyzer. 

Figure 4 shows the micros in the MIDAS disc 
controller. The main control micro has access to 
head-select and drive-select lines and to head
stepping signals. This micro also monitors both 
the seCtor number being counted from pulses from 
the drive and the sector number read from the 
data track. It is the device which begins a read 
or write operation when the correct position is 
reached on the disc. Malfunctions in the drive 
itself or in its self-contained electronics are 
easily probed by swapping the BASIC EPROM set 
into the main control micro. Positioning and 
read or write commands can be issued in loops to 
provide signals for viewing on oscilloscope or 
logic analyzer. Simple programs can be entered 
and run for checking the electromechanical func
tions of the mechanism. 

TO SYSTEM 

MAIN CONTROL 
MICRO 

DISC 
DRIVE 

SUPER MINI DATA PORTS 
TO DATA PATHWAY SWITCHES 

Figure 4. MIDAS disc controller 

The ECC micro normally is invoked only when 
correctable data errors are detected. It has 
access to the data in data buffers as well as to 
ECC data. If problems arise in this area, BASIC 
programs can be loaded to run diagnostics on all 
the data storage in fhe controller. Loops can be 
run to provide test signals for viewing on oscil
loscope or logic analyzer. The file control micro 
controls the disc connection, via ports I, II and 
III, to the remainder of MIDAS. It also issues 
global commands to the main control micro. Prob
lems in these areas can be diagnosed and solved 
using techniques analogous to those associated 
with the other two micros. 

Thus we see that each micro has its discrete 
region of responsibility and control. Using each 
as a debugging tool allows us to treat each dis
crete region independently. We do not have to 
involve the entire pyramid in a debugging opera
tion on one of its internal components. We could 



digress into a description of each of MIDAS's 
many embedded micros. However, the debugging 
and/or maintenance value of 111ost are siniilar. 
Each allows us to divide, communicate with, and 
eventually to conquer problems in an efficient 
manner. 

Another example, one with unique features, is 
the "conductor:" the subsystem which switches 
memories from "super-micro" to "super-micro." 
The controlling micro has no mechanical device to 
control. (Figure 5) This subsystem is labeled 
the "conductor" because it is also responsible 
for directing pre-orchestrated flows of data 
through the system processors. The conductor's 
players are FIFO's (First In, First Out, stacks) 
loaded with numbers (control bytes) representing 
memories. Each byte turns on gates connecting a 
processor to a memory. A pair of FIFO's is 
dedicated to each proc~ssor. One holds bytes 
corresponding to memories containing data to be 
processed. The other holds memory numbers cor
responding to data already processed. The control 
micro passes numbers from "processed data" FIFO's 
into "ready to be processed data" FIFO's. Lists 
of numbers are initi~lly passed to the control 
micro from a processor at the next higher level 
in the pyramid (the "Secondary CPU"). 

COHTIIOI. 
MINICOMPUTlR 

jiiCOMOMYCI'tJJ 

DIJAl fifO COHTJI:Ol Ma~Tlll 

COfiTROiliNU 
TO II£MOI;t'f. 
NllCTGATU 

Figure 5. The MIDAS conductor directs data flows 
through the system processors. 

The control micro, in the event of memory or 
processor failure, can be loaded with a BASIC 
interpreter, giving the service person access to 
FIFO controls. The maintenance person can then 
connect any memory to any processor for checkout 
and debugging. In this case, the embedded micro 
is not doing the actual checkout. It is simply 
giving the service person a convenient handle for 
manipulating parts of the system to expedite 
maintenance and checkout, but not requiring him 
to use remote elements of the system for his 
manipulations. 

In summary, the precise use to which the 
embedded micro can best be put to expedite main
tenance dependends on the position of the micro 
and the structure and natur~ of the subsystem 
into which it is ~mbedded. However, in general 
it allows the exclusion of much uninteresting, 
functioning hardware from consideration during a 
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maintenance pass. It also expedites communica
tions between the hardware of interest and the 
person working on the hardware. 

Developing a Cost Effective Micro 

As was discussed earlier, we felt it desirable 
to enhance our embedded micros to where they would 
be able to run BASIC when necessitated by mainte
nance requirements necessitated this. On the 
other hand, over-enhancement could make the cost, 
both in money and phys i ca 1 space, a prohibitive 
factor in many systems. The unit we have built 
and are using requires less than 2-l/2" x 5" of 
wire-wrap board space and costs about $100 to 
build. (See Fig. 6}. It is a reduced version of 
a commercially available 16-bit microprocessor 
system. 

CONNECTOR FOR 
PORTABLE TERMINAL 

2Kx8BIT 
RAM 

I' 
I 

--------------------------------------~ 

) 

ADDITIONAL 1/0 FOR 
CONNECTION TO HOST SYSTEM 

) 

MAPPED 1/0 FOR 
CONNECTION TO HOST SYSTEM 

Figure 6. An embedded microcomputer module for 
use in MIDAS. BASIC is run in the micro by 
exchanging EPROMS. 

Two versions of the microprocessor are 
produced by the manufacturer. One is a 64-pin 
device. The other is a 40-pin device. The major 
difference between the two is s{xteen pins dedi
cated to the data bus on the 64-pin device versus 
8 on the 40-pin chip. In order to make the module 
as small as possible physically, we chose the 
40-pin device. The various problems we encoun
tered as a result of this choice are discussed at 
length in Reference 6. 

When running BASIC, the micro has about 1000 
bytes of RAM available for source statements and 
variables. Figure 7 is a BASIC program (a memory 
diagnostic) which uses most of the available RAM. 

I 
<) 



I< 

It is included to give the reader a feel for the 
size of the program which can be run. 

10 
20 
30 
33 
40 
50 
55 
56 
60 
70 
BO 
90 
100 
110 
120 
130 
140 
150 
200 
210 
215 
220 
225 
230 
250 
1000 
1010 
1015 
1020 
1030 
1040 
1050 
1060 
1010 
lOBO 
2000 

SIZ 

GOSUB 1000 
BASE 0120H:: CRF[0].05FFH:: BASE 02AOH:: CRF[6].03EH:: CRB(6]ol:: CRBf7]•1 
GO SUB 1000:: BASE 0120H:: CRF(O].OIFFH:: GOSOB 1000 
BAS£ Ol20H:: CRF[0].05FFH:: GOSUB 1000 
OAT.OIBOH:: GOSUB lOBO 
INPUT "AOORW ";OAT:: If 0Ah999999 THEN GOTO 200 
If 0Ah99999 THEN GOTO 220 
If 0Ah65535 THEN GOTO 110 
CH0.057BH:: OAT. LNOT (OAT):: GOSUB 1010 
INPUT "DATA ";OAT:: If OAT>65535 THEN GOTO 110 
OAT• LNOT (OAT):: Cll0.0570H:: GOSUB 1010 
INPUT OAT:: If OAT>65535 THEN GOTO 110 
OAT• LNOT (OAT):: Cll0.057EH:: GOSUB 1010:: GOTO 90 

~:~~T L~~r"'~A;~~~T i~o~~5~~~~~5~~u:H~~~~OTO 50 
GOSUB 1040:: OAT· LNOT (OAT):: PRINT IOAT;OAT 
INPUT OAT:: If 0AT>65535 THEN GOTO 50 
CH0.0577H:: OAT·-1:: GOSUB 1010:: GOTO 130 
INPUT "STRT AllOR ";OAT. 
CHOo057BH:: OAT • LNOT (OAT):: GOSUB 1010:: CH0..077FH:: GOSUB 1010:: GOTO 220 
CH0.057FH:: GO SUB 1010 
INPUT "REG ";OAT:: If OAT>4095 THEN GOTO 50 
GOSUB 1080:: GOSUB 1040 
PRINT I LNOT (OAT); LNOT OAT 
GOTO 220 

BASE 02AOH:: CRB(Bl.O:: CRB(Bl·1:: RETURN 
BASE 02AOH:: CRB(6 •I:: CRB(7 ol:: CRF(6]·03EH:: BASE Ol20H 
CRF[0].057FH:: GOSUB 1000 
BASE 0120H:: CRF(O].OAT:: BASE 02AOH:: CRB(7]..0:: GOlUB 1000 
C~B(7[•1:: BASE 0120H:: CRF(O]oCMO:: GOSUB 1000:: RETURN 
BASE 0120H:: CRBf-16].1:: CRB[-1l.O 
BASE 02AOH:: CRF 6].03EH:: CRB(6 .o:: CRB[7].0:: CRB(B].O 
~~~~R~I2011:: OAT·CRF[O]:: BASE 02AOII:: CRB(B]-1:: CRB[7].1:: CRB(6]·1 

CRF(6].03011:: BAS£ 0120H:: CRF[O]. LNOT OAT:: GOSUB 1000:: RETURN 
INPUT OAT:: CHOo056FH:: GOSUB.1010:: GOTO 2000 

PRGH:0390H BYTES 
VARS:04H BYTlS 
FREE :072H BYTES 

Figure 7. Memory diagnostic program showing 
approximate size of program which can be loaded 
and run in the embedded micro. 

Conclusion 

Embedded microcomputers can be enhanced suf
ficiently to be able to run BASIC during mainte
nance and debugging operations. The enhancement 
can be minimal enough to keep the cost in both 
money and physical space allocation within accept
able bounds. 

The value of being able to execute BASIC in 
embedded microcomputers dut· i ng maintenance and 
debugging operations is the ease with which the 
maintenance person can gain access to and com
municate with vital signals in the system. The 
embedded micro allows system maintenance to be 
carried on within discrete subsystems without the 
necessity of involving other major parts of the 
system. 
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